Microbial manganese (Mn) oxide production in surface sediments of a Georgia saltmarsh was directly measured using an assay involving the oxidation of 4,4′,4″-methylidynetris (N,N-dimethylaniline), leuco crystal violet (LCV), by Mn oxides to produce crystal violet. The assay exhibits high specificity for Mn oxides without interference by Mn(II) and is sufficiently sensitive to determine rates of Mn oxidation in surface sediment or saltmarsh creek water suspensions. Sample salinity affects crystal violet absorbance in the 0-25 salinity range and must be corrected for in Mn oxide determinations for estuarine samples of variable salinity. Other oxidants found to oxidize LCV slowly included Cl(I), Cr(III), I(V), Fe(III), and Mn(III), although the sensitivity of the assay for Mn(IV) oxides was found to be seven times greater than for Mn(III), and at least 100 times greater than for any of the other oxidants. Rates of abiotic Mn oxide production in sediment suspensions treated with either sodium azide or formalin, or autoclaved, were much slower than rates determined for untreated sediments. Sodium azide (7·7 mM) inhibited Mn oxide production in these sediment suspensions to rates between 5 and 10% of the rates of Mn oxidation determined for unamended suspensions. Manganese oxidation was highly temperature dependent, with maximal rates on a dry weight basis (8·9 nmol mg dwt-1 h-1), occurring at 60°C, and negligible activity at 100 and 0°C. Rates were also dependent on sample pH, with maximal rates at pH 6·7, decreasing to near 0 as the pH was lowered to approximately 3·0. For Mn(II) concentrations ranging from 9 to 91 μM, rates of Mn oxide production were independent of Mn(II) concentration, while Mn oxide production was inhibited at concentrations greater than 91 μM (e.g. by 25-40% at 450 μM). Rates of microbial Mn oxide production in surface sediment/saltmarsh creek water suspensions incubated under natural conditions of temperature, pH, and Mn(II) concentration ranged from 0·49 to 2·7 nmol mg dwt-1 h-1 and were nearly four times higher in surface sediments from creek banks than in sediments from the high marsh. The microorganisms associated with saltmarsh creek water particulate matter oxidized Mn(II) at rates intermediate to the values obtained for the two types of surface sediments, averaging 0·98 nmol mg dwt-1 h-1.