To compare the image quality and efficacy of the adaptive imaging receiver (AIR) coil (GE Healthcare) and the traditional coil for multiplexed sensitivity encoding diffusion-weighted imaging (MUSE-DWI) in the detection of focal liver lesions (FLLs). Two groups of MUSE-DWI were obtained. Image quality was qualitatively evaluated by 3 independent blinded radiologists on a 5-point scale, and quantitative parameters were calculated by measurements of the region of interest in the liver and FLLs. McNemar's test were used to compare the characteristics and detectability. Less image noise, sharper contours, milder susceptibility artefacts, and better liver lesion conspicuity were found by all radiologists in 60 livers with 140 FLLs with the AIR coil than with the traditional coil (reader average mean, 4.3-4.4 vs. 3.7-4.0, P < .001). The signal-to-noise ratio (SNR) of the liver was significantly higher with the AIR coil than with the traditional coil (right lobe: mean, 8.89 vs.7.76, P < .05; left lobe: mean, 7.14 vs.6.19, P < .001), and the SNR of FLLs (mean, 24.62 vs. 21.01, P < .001) and lesion-to-liver CNR (mean, 16.61 vs. 14.02, P < .001) exhibited significant differences between the AIR coil and the traditional coil. Besides, superior detection of FLLs was observed with the AIR coil compared to the traditional coil (95.7% [134/140] vs. 85.7% [120/140], P < .001). The AIR coil yields less noise, fewer distortions, better lesion detectability, higher SNR of the liver and FLLs, and improved lesion-to-liver CNR during liver MUSE-DWI. Thus, it is a feasible and effective scanning scheme in liver MRI. The AIR coil improves SNR and the quality of liver MR imaging compared with the traditional coil.
Read full abstract