We report on the discovery and analysis of the planetary microlensing event OGLE-2019-BLG-1180 with a planet-to-star mass ratio q ∼ 0.003. The event OGLE-2019-BLG-1180 has unambiguous cusp-passing and caustic-crossing anomalies, which were caused by a wide planetary caustic with s ≃ 2, where s is the star–planet separation in units of the angular Einstein radius θ E. Thanks to well-covered anomalies by the Korea Micorolensing Telescope Network (KMTNet), we measure both the angular Einstein radius and the microlens parallax in spite of a relatively short event timescale of t E = 28 days. However, because of a weak constraint on the parallax, we conduct a Bayesian analysis to estimate the physical lens parameters. We find that the lens system is a super-Jupiter-mass planet of orbiting a late-type star of at a distance . The projected star–planet separation is , which means that the planet orbits at about four times the snow line of the host star. Considering the relative lens–source proper motion of μ rel = 6 mas yr−1, the lens will be separated from the source by 60 mas in 2029. At that time one can measure the lens flux from adaptive optics imaging of Keck or a next-generation 30 m class telescope. OGLE-2019-BLG-1180Lb represents a growing population of wide-orbit planets detected by KMTNet, so we also present a general investigation into prospects for further expanding the sample of such planets.
Read full abstract