A zoom lens is more flexible for photogrammetric measurements under diverse environments than a fixed lens. However, challenges in calibration of zoom-lens cameras preclude the wide use of zoom lenses in the field of close-range photogrammetry. Thus, a novel zoom lens calibration method is proposed in this study. In this method, instead of conducting modeling after monofocal calibrations, we summarize the empirical zoom/focus models of intrinsic parameters first and then incorporate these parameters into traditional collinearity equations to construct the fundamental mathematical model, i.e., collinearity equations with zoom- and focus-related intrinsic parameters. Similar to monofocal calibration, images taken at several combinations of zoom and focus settings are processed in a single self-calibration bundle adjustment. In the self-calibration bundle adjustment, three types of unknowns, namely, exterior orientation parameters, unknown space point coordinates, and model coefficients of the intrinsic parameters, are solved simultaneously. Experiments on three different digital cameras with zoom lenses support the feasibility of the proposed method, and their relative accuracies range from 1:4000 to 1:15,100. Furthermore, the nominal focal length written in the exchangeable image file header is found to lack reliability in experiments. Thereafter, the joint influence of zoom lens instability and zoom recording errors is further analyzed quantitatively. The analysis result is consistent with the experimental result and explains the reason why zoom lens calibration can never have the same accuracy as monofocal self-calibration.