Plant essential oils are unstable due to high volatility and easy oxidation, while microencapsulation provides a potentially effective strategy for increasing the stability of natural essential oils and preserving their function. This study examined the effects of feeding coated oregano essential oil and cinnamaldehyde (COEC) compounds on growth, immune organ development, intestinal morphology, mucosal immune function, and the cecal microbiota populations of broilers. Three hundred one-day-old male Arbor Acres broiler chicks were organized into 5 groups: 1) negative control fed basal diet alone (NC), 2) positive control receiving basal diet plus 50mg/kg of chlortetracycline (CTC), 3) basal diet plus 150mg/kg COEC (COEC150), 4) plus 300mg/kg COEC (COEC300), and 5) plus 450mg/kg COEC (COEC450). The supplement trial was continued for 42 d. The results showed that CTC, COEC300, and COEC450 treatments decreased the feed conversion ratio of broilers both in the starter and whole experiment phases, increased the height of jejunal villi at 21 d and the number of goblet cells and IgA-producing cells at 21 or 42 d compared with NC group (P < 0.05). Members of the COEC300 treatment group had a higher thymus weight index and jejunum length index than birds of NC or CTC groups at 21 d (P < 0.05). CTC and all COEC treatments decreased malondialdehyde content in jejunal mucosa at 42 d (P < 0.05). The population of Escherichia coli (E. coli) in the cecal digesta at 21 d was lower in the CTC, COEC300, and COEC450 treatment groups compared with the NC group (P < 0.05). In contrast to the CTC group, COEC supplementation dose-dependently accelerated body weight gain, improved jejunal morphology, decreased malondialdehyde content in jejunal mucosa, increased numbers of jejunal goblet cells and IgA-producing cells, and decreased the E. coli population in cecal digesta at 21 or 42 d (P < 0.05). Thus, we concluded that feeding broiler chickens with 300 or 450mg/kg in antibiotic-free diets can improve growth performance, enhance immune responses, and inhibit the proliferation of cecal pathogenic bacteria.
Read full abstract