The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.