The two-mode property of bulk transverse optical (TO) phonons in ternary mixed crystals of wurtzite AlxGa1-xN has been investigated by introducing impurity modes in a modified random-element isodisplacement model. Based on the dielectric continuous model, the uniaxial model, and the Lei-Ting balance equation, the effects of the two-mode property on electrostatic potentials of interface optical and confined optical phonons in AlGaN/GaN quantum wells, as well as their influences on the electronic mobility (EM), are discussed by a component-dependent weight model. Our results indicate that the total EM decreases to a minimum at first and then increases slowly with x under the influences of the competitions from the eight branches of phonons. The further calculation shows that the total EM decreases with the increment of temperature in the range of 200 K < T < 400 K and reduction of well width d. As a comparison, the EM is calculated for an Al0.58Ga0.42N/GaN quantum well at room temperature, and our result is 1263.0 cm2/Vs, which is 1.44 times of the experiment value. Our result is expected since the difference between our theory and the experiment is mainly due to the neglect of interface-roughness and other secondary scattering mechanisms. Consequently, the two-mode property of bulk TO phonons in ternary mixed crystals does affect obviously on the electron transport in the quantum wells. And our component-dependent weight model could be extended to study the electric properties influenced by optical phonons in other related heterostructures.
Read full abstract