This study aimed to create a model to identify land suitable for growing sunn hemp (Crotalaria juncea) and pigeon pea (Cajanus cajan) in the Okavango River basin of the Kavango East region of Namibia. The researchers used advanced tree-based ensemble learning models to improve the accuracy of the analysis. These learning models are derived from original models such as Random Forest, Extra Trees, Gradient Boosting, and XGBoost, combined with a multivariate regression analysis. The Random Forest and XGboost models exhibited outstanding performance, as evidenced by their respective accuracy values of 0.97 and 0.96. In addition, this study proposed an innovative approach through the integration of subjective and objective analytical methods, which are independent of one another. The subjective component of the analysis employed a Multi-Criteria Decision Making-Analytic Hierarchy Process (MCDM-AHP). On the other hand, the objective component used a data-driven multivariate approach supported by tree-based learning algorithms. The researchers considered twenty-two variables, encompassing climatic conditions, hydro-geomorphologic features, soil characteristics, vegetation patterns, and socio-economic factors. These variables played a crucial role to identify the most suitable areas for growing the selected leguminous crops. The MCDM-AHP method utilised expert evaluations to rank the importance of variables, identifying water sources, slope, and soil properties as key factors. A suitability mapping analysis revealed that 17.63% of the area was highly suitable and 62.77% moderately suitable, while 10% was less suitable and 9.59% unsuitable for growing these two legumes. According to the data driven methodology, soil fertility and nitrogen content emerged as key determinants for land suitability. This is particularly relevant for nitrogen-fixing leguminous crops such as sunn hemp and pigeon pea, which play a central role in improving soil quality and ensuring food security.
Read full abstract