The role of immune system components in the development of myocardial remodeling in chronic kidney disease (CKD) and kidney transplantation remains an open question. Our aim was to investigate the associations between immune cell subpopulations in the circulation of CKD patients and kidney transplant recipients (KTRs) with subclinical indices of myocardial performance. We enrolled 44 CKD patients and 38 KTRs without established cardiovascular disease. A selected panel of immune cells was measured by flow cytometry. Classical and novel strain-related indices of ventricular function were measured by speckle-tracking echocardiography at baseline and following dipyridamole infusion. In CKD patients, the left ventricular (LV) relative wall thickness correlated with the CD14++CD16- monocytes (β = 0.447, p = 0.004), while the CD14++CD16+ monocytes were independent correlates of the global radial strain (β = 0.351, p = 0.04). In KTRs, dipyridamole induced changes in global longitudinal strain correlated with CD14++CD16+ monocytes (β = 0.423, p = 0.009) and CD4+ T-cells (β = 0.403, p = 0.01). LV twist and untwist were independently correlated with the CD8+ T-cells (β = 0.405, p = 0.02 and β = -0.367, p = 0.03, respectively) in CKD patients, whereas the CD14++CD16+ monocytes were independent correlates of LV twist and untwist in KTRs (β = 0.405, p = 0.02 and β = -0.367, p = 0.03, respectively). Immune cell subsets independently correlate with left ventricular strain and torsion-related indices in CKD patients and KTRs without established CVD.
Read full abstract