Lidocaine increases the energy required for ventricular defibrillation in dogs. Because sodium channel-blocking agents that are weak bases have pH-dependent electrophysiologic effects, we investigated the pH dependence of lidocaine (pKa, 7.9) on internal defibrillation energy requirements in 28 dogs with atrial spring and left ventricular patch electrodes. Results of defibrillation testing were used to derive 50% and 90% successful energy requirements (ED50 and ED90) using logistic regression and were compared with analysis of variance. Acidosis produced by hydrochloric acid infusion decreased the arterial pH from 7.40 +/- 0.05 (SD) to 7.18 +/- 0.03 (n = 8, p less than 0.01), but no significant change in ED90 was observed (14 +/- 4 to 16 +/- 6 J). Lidocaine infusion to therapeutic levels (4.2 +/- .07 micrograms/ml) at normal pH (7.42 +/- 0.02) increased ED90 from 13 +/- 3 to 17 +/- 3 J (n = 6, p less than 0.05), and subsequent acidosis (pH 7.19 +/- 0.02, p less than 0.01) exacerbated this effect of lidocaine on ED90 (22 +/- 5 J, p less than 0.05). Alkalosis produced by respirator hyperventilation increased the arterial pH from 7.41 +/- 0.03 to 7.60 +/- 0.03 (n = 8, p less than 0.01), with a fall in ED90 from 13 +/- 4 to 8 +/- 3 J (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Read full abstract