In this study, we focus on the designability and controllability of the interaction interface between secondary structures, and discover an important interface interaction between helical secondary structures by non-covalent synthesis along the helical axis. The formation of discrete heterochiral dimers consisting of left-handed helix and right-handed helix not only helps to discover nonclassical supramolecular chirality phenomena, but also enables controllable protein assembly. Highly ordered nanostructures were thus constructed using p-stacking dimerization of helical foldamers to control tetrameric avidin proteins. The designable and modifiable primitives of artificial folded molecules enable the modification of secondary structure interfaces through non-covalent interactions, leading to the generation of unique structures and functions. These findings are of fundamental importance to the understanding of the precise assembly process of helical foldamers and can provide insights to facilitate the rational design of abiotic protein-like tertiary structures and further functionalization.
Read full abstract