In today's cyber-enabled smart grids, high penetration of uncertain renewables, purposeful manipulation of meter readings, and the need for wide-area situational awareness, call for fast, accurate, and robust power system state estimation. The least-absolute-value (LAV) estimator is known for its robustness relative to the weighted least-squares (WLS) one. However, due to nonconvexity and nonsmoothness, existing LAV solvers based on linear programming are typically slow, hence inadequate for real-time system monitoring. This paper develops two novel algorithms for efficient LAV estimation, which draw from recent advances in composite optimization. The first is a deterministic linear proximal scheme that handles a sequence of convex quadratic problems, each efficiently solvable either via off-the-shelf algorithms or through the alternating direction method of multipliers. Leveraging the sparse connectivity inherent to power networks, the second scheme is stochastic, and updates only \emph{a few} entries of the complex voltage state vector per iteration. In particular, when voltage magnitude and (re)active power flow measurements are used only, this number reduces to one or two, \emph{regardless of} the number of buses in the network. This computational complexity evidently scales well to large-size power systems. Furthermore, by carefully \emph{mini-batching} the voltage and power flow measurements, accelerated implementation of the stochastic iterations becomes possible. The developed algorithms are numerically evaluated using a variety of benchmark power networks. Simulated tests corroborate that improved robustness can be attained at comparable or markedly reduced computation times for medium- or large-size networks relative to the "workhorse" WLS-based Gauss-Newton iterations.
Read full abstract