Nowadays, due to the exponential growth of user generated images and videos, there is an increasing interest in learning-based hashing methods. In computer vision, the hash functions are learned in such a way that the hash codes can preserve essential properties of the original space (or label information). Then the Hamming distance of the hash codes can approximate the data similarity. On the other hand, vector quantization methods quantize the data into different clusters based on the criteria of minimal quantization error, and then perform the search using look-up tables. While hashing methods using Hamming distance can achieve faster search speed, their accuracy is often outperformed by quantization methods with the same code length, due to the low quantization error and more flexible distance lookups. To improve the effectiveness of the hashing methods, in this work, we propose Quantization-based Hashing (QBH), a general framework which incorporates the advantages of quantization error reduction methods into conventional property preserving hashing methods. The learned hash codes simultaneously preserve the properties in the original space and reduce the quantization error, and thus can achieve better performance. Furthermore, the hash functions and a quantizer can be jointly learned and iteratively updated in a unified framework, which can be readily used to generate hash codes or quantize new data points. Importantly, QBH is a generic framework that can be integrated to different property preserving hashing methods and quantization strategies, and we apply QBH to both unsupervised and supervised hashing models as showcases in this paper. Experimental results on three large-scale unlabeled datasets (i.e., SIFT1M, GIST1M, and SIFT1B), three labeled datastes (i.e., ESPGAME, IAPRTC and MIRFLICKR) and one video dataset (UQ_VIDEO) demonstrate the superior performance of our QBH over existing unsupervised and supervised hashing methods.
Read full abstract