Automatically identifying key physiological factors in plants, such as leaf relative humidity (LRH), chlorophyll content (Chl), and nitrogen levels (N), is vital for effective aeroponic management and improving growth, yield, quality, and sustainability. Meta-learning (MetaL) solutions utilize data fusion and intelligent processing, ensuring fast and consistent outcomes. This paper aims to develop a novel MetaL framework that leverages multimodal data sources—including spectral, thermal, and IoT environmental data—to enable real-time, non-invasive identification of LRH, Chl, and N content in aeroponically grown lettuce. The research examined various spectral reflectance indices (SRIs) and thermal indicators from plant characteristics. Model-based feature selection was implemented using back-propagation neural networks (BPNN), decision trees (DT), and gradient boosting machines (GBM) to identify key attributes and optimize hyperparameters. The experimental findings indicated that deploying GBM-based top variables as the foundational model, combined with BPNN as the meta-model, significantly improved the accuracy of analyzing the assigned factors. The prediction scores (R²) for LRH, Chl, and N increased to 0.875 (RMSE=0.879), 0.886 (RMSE=0.694), and 0.930 (RMSE=0.184), respectively, compared to applying BPNN-based features alone as a standalone model. Overall, the designed methodology contributes to more accurate predictions of plant physiological states, enabling proactive steps toward sustainable aeroponic agriculture.
Read full abstract