<p align="justify"><span lang="EN-US">Automated leaf disease detection quickly identifies early symptoms, and saves time on large farms. Traditional methods like visual inspection and laboratory detection are prevalent despite being labor-intensive, time-consuming, and susceptible to human error. Recently, deep learning (DL) has emerged as a promising alternative for crop disease recognition. However, these models usually demand extensive training data and face problems in generalization due to the diverse features among different crop diseases. This complexity makes it difficult to achieve optimal recognition performance across all scenarios. To solve this issue, a novel ensemble approach INCVX-Net is proposed to integrate the three DL models, ‘Inception, visual geometry group (VGG)-16, and Xception’ using weighted averaging ensemble for tomato crop leaf disease detection. This approach utilizes the strengths of three DL models to recognize a wide range of disease patterns and captures even slight changes in leaf characteristics. INCVX-Net achieves an impressive 99.5% accuracy in disease detection, outperforming base models such as InceptionV2 (93.4%), VGG-16 Net (92.7%), and Xception (95.2%). This significant leap in accuracy demonstrates the growing power of ensemble DL models in disease detection compared to standalone DL models. The research paves the groundwork for future advancements in disease detection, enhancing precision agriculture through ensemble models.</span></p>
Read full abstract