Cotton leaf curl disease (CLCuD) is caused by a complex of several whiteflies (Bemisia tabaci Genn.)-transmitted begomovirus species, Cotton leaf curl Multan virus (CLCuMuV), Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Alabad virus (CLCuAlV) by individual of mixed infection, associated with Cotton leaf curl Multan betasatellite (CLCuMB) and several alphasatellites. The disease causes major economic losses in cotton in the Indian subcontinent. For monitoring of epidemiology and development of management strategies of CLCuD, a quick, sensitive and effective method capable of detecting all the begomovirus, betasatellite and alphasatellite components associated with CLCuD is required. With this objective, a multiplex polymerase chain reaction (mPCR) assay was developed for the simultaneous detection of these three viral components associated with CLCuD of cotton. Primers for each component were designed based on the retrieved reference sequences from the GenBank. Each pair of primers, designed for each of the respective component, was evaluated for its sensitivity and specificity in both the component-specific simplex polymerase chain reaction (sPCR) and mPCR assay. This report identified three viral component-specific pairs of primers which, in all combinations, amplified simultaneously the CP gene (780 nts) of the begomovirus, the βC1gene (375 nts) of the betasatellite and the Rep gene (452 nts) of the alphasatellite associated with CLCuD in the mPCR assays. The amplified products specific to each component produced by these assays were identified based on their amplicon sizes, and the identities of the viral components amplified were confirmed by cloning and sequencing the amplicons obtained in the mPCR. The mPCR assay was validated using naturally CLCuD-affected cotton plants of the fields. This assay will be useful for rapid detection of CLCuD-associated begomovirus, betasatellite and alphasatellite DNA in field samples, extensive resistance screening in resistance breeding programme, and also monitoring epidemiology for detection of virus and its components when symptoms are mild or absent in the plant.
Read full abstract