Elevated per- and polyfluoroalkyl substance (PFAS) concentrations have been reported in municipal solid waste (MSW) landfill leachate with higher levels in wet and warmer subtropical climates. Information about landfill leachate characteristics is much more limited in tropical climates. In this study, 20 landfill leachate samples were collected from three MSW landfills on the tropical island of Puerto Rico and results were compared against landfills nationally and within Florida, USA. The samples collected in Puerto Rico underwent physical-chemical analysis, as well as a quantitative analysis of 92 PFAS. Samples described in this study include discrete leachate types, such as leachate, gas condensate, and leachate which has undergone on-site treatment (e.g., RO treatment, phytoremediation, lagoons). A total of 51 PFAS were detected above quantitation limits, including perfluorohexylphosphonic acid, a perfluoroalkyl acid (PFAA) which has not been reported previously in landfill leachate. ∑PFAS concentrations in this study (mean: 38,000 ng L−1), as well as concentrations of individual PFAS, are significantly higher than other reported MSW landfill leachate concentrations. The profiles of leachates collected from on-site treatment systems indicate possible transformation of precursor PFAS as a result of treatment processes – oxidizing conditions, for example, may facilitate aerobic transformation, increase the concentrations of PFAAs, and possibly increase the apparent ∑PFAS concentration. Extreme climate events, including rising temperatures and more frequent hurricanes, have placed additional strain on the solid waste management infrastructure on the island – adding complexity to an already challenging PFAS management issue. As concern grows over PFAS contamination in drinking water, these findings should inform solid waste and leachate management decisions in order to minimize PFAS emissions in island environments.