This work outlines the design and development activities of various electrically small antennas for bio-medical applications. It also covers the electrical modeling aspects of all these miniaturized antennas. Three antennas with different specifications have been discussed with diversified proposed applications. First example deals with a single frequency (9.45 GHz) on-chip antenna, whereas the second one covers an ultra-wideband frequency range (2.5 to 20.6 GHz) and finally the third antenna targets an application for 100 GHz band. The size of the first one is 2×2.1 mm2, while the second on-chip antenna occupies an area of about 4.6 ×11.5 mm2 over silicon substrate. The third antenna module is developed on LCP substrate, which can be accommodated within 12.5×27 mm2 area. Though the two on-chip antennas offer only lower gain of around -29 dBi and -3 dBi respectively implementing silicon as a base material, but it paves the way for monolithic integration within a chip. The third candidate exhibits a directive gain of 19-20 dBi with a radiation efficiency of 80% over 100 GHz band. The highlighted portion of this current research work is to propose empirical modeling of electrically small antennas. The proposed methods claim to be most simple in nature and without applying complicated mathematical jugglery easy circuit models are presented for these aforesaid antennas, going to the insight of device physics. A comparative study has been carried out with the proposed model and full-wave simulated results for each antenna, to validate the circuit models.
Read full abstract