Numerous biological systems in nature provide much inspiration for humanity to master diverse coloration strategies for creating stimuli-responsive materials and display devices, such as to access gorgeous structural colors from well-defined photonic structures. Cholesteric liquid crystals (CLCs) are a fascinating genre of photonic materials displaying iridescent colors responsive to circumstance changes; however, it is still a big challenge to design materials with broadband color variation as well as good flexibility and freestanding capacity. Herein, we report a feasible and flexible strategy to fabricate cholesteric liquid-crystal networks (CLCNs) with precise colors across the entire visible spectrum through molecular structure tailoring and topology engineering and demonstrate their application as smart displays and rewritable photonic paper. Influences of chiral and achiral LC monomers on the thermochromic behaviors of CLC precursors as well as on the topology of the polymerized CLCNs are systematically investigated, demonstrating that the monoacrylate achiral LC facilitated the formation of a smectic phase-chiral phase (Sm-Ch) pretransitional phase in the CLC mixture and improved the flexibility of the photopolymerized CLCNs. High-resolution multicolor patterns in one CLCN film are generated through photomask polymerization. In addition, the freestanding CLCN films show perceivable mechanochromic behaviors and repeated erasing-rewriting performances. This work opens avenues toward the realization of pixelated colorful patterns and rewritable CLCN films promising in technology fields ranging from information storage and smart camouflage to anti-counterfeiting and smart display.