Manganites of the Sm1−xSrxMnO3 system (x=0.33, 0.4, and 0.45) possess giant negative values of the magnetoresistance Δρ/ρ and the volume magnetostriction ω near the Curie temperature TC. In the compound with x=0.33, the isotherms of Δρ/ρ, ω, and magnetization σ exhibit smooth variation and do not reach saturation up to maximum magnetic field strengths (120 kOe) studied (according to the neutron diffraction data, this substance comprises a ferromagnetic (FM) matrix with distributed clusters of a layered antiferromagnetic (AFM) structure of the A type). In the compounds with x=0.4 and 0.45 containing, besides the FM matrix and A-type AFM phase, a charge-ordered AFM phase of the CE type (thermally stable to higher temperatures as compared to the A-type AFM and the FM phases), the same isotherms measured at T ≥ TC show a jumplike increase in the interval of field strengths between Hc1 and Hc2 and then reach saturation. In the interval Hc1 > H > Hc2, the σ, ω, and Δρ/ρ values exhibit a metastable behavior. At temperatures above TC, the anisotropic magnetostriction changes sign, which is indicative of rearrangements in the crystal structure. The giant values of ω and Δρ/ρ observed at T ≥ TC for all compounds, together with excess (relative to the linear) thermal expansion and a maximum on the ρ(T) curve, are explained by the phenomenon of electron phase separation caused by a strong s-d exchange. The giant values of magnetoresistance and volume magnetostriction (with ω reaching ∼10−3) are attributed to an increase in the volume of the FM phase induced by the applied magnetic field. In the compound with x=0.33, this increase proceeds smoothly as the FM phase grows through the FM layers in the A-type AFM phase. In the compounds with x=0.4 and 0.45, the FM phase volume increases at the expense of the charge-ordered CE-type AFM structure (in which spins of the neighboring manganese ions possess an AFM order). The jumps observed on the σ(H) curves, whereby the magnetization σ reaches ∼70% of the value at T=1.5 K, are indicative of a threshold character of the charge-ordered phase transition to the FM state. Thus, the giant values of ω and Δρ/ρ are inherent in the FM state, appearing as a result of the magnetic-field-induced transition of the charge-ordered phase to the FM state, rather than being caused by melting of this phase.
Read full abstract