This research focuses on a mineral–cement mixture containing bitumen emulsion, designed for cold recycling procedures, the formulation of which includes 80% (m/m) of waste material. Deep cold recycling technology from the MCE mixture guarantees the implementation of a sustainable development policy in the field of road construction. The utilised waste materials include 50% (m/m) reclaimed asphalt pavement (RAP) from damaged asphalt layers and 30% (m/m) recycled aggregate (RA) sourced from the substructure. In order to assess the possibility of using a significant amount of waste materials in the composition of the mineral–cement–emulsion (MCE) mixture, it is necessary to optimise the MCE mix. Optimisation was carried out with respect to the quantity and type of binding agents, such as Portland cement (CEM), bitumen emulsion (EMU), and redispersible polymer powder (RPP). The examination of the impact of the binding agents on the physico-mechanical characteristics of the MCE blend was performed using a Box–Behnken trivalent fractional design. This method has not been used before to optimise MCE mixture composition. This is a novelty in predicting MCE mixture properties. Examinations of the physical properties, mechanical properties, resistance to the effects of climatic factors, and stiffness modulus were conducted on Marshall samples prepared in laboratory settings. Mathematical models determining the variability of the attributes under analysis in correlation with the quantity of the binding agents were determined for the properties under investigation. The MCE mixture composition was optimised through the acquired mathematical models describing the physico-mechanical characteristics, resistance to climatic factors, and rigidity modulus. The optimisation was carried out through the generalised utility function UIII. The optimisation resulted in indicating the proportional percentages of the binders, enabling the assurance of the required properties of the cold recycled mix while utilising the maximum quantity of waste materials.