The launch vehicle industry has long been considered a pioneering industry in systems engineering. Launch vehicles are large complex systems that require a methodical multi-disciplinary approach to design, build, and launch. Launch vehicles are used to deliver payloads—such as humans, robotic science missions, or national security payloads—to desired locations in space. Previous research has identified deficient or underperforming systems engineering as a leading contributor to launch vehicle failures. Launch vehicle failures can negatively affect national security, the economy, science, and society, thus highlighting the importance of understanding the factors that influence systems engineering in launch vehicle organizations in the United States. The purpose of this study was to identify and evaluate the relationships between organizational factors and systems engineering process performance. Structural equation modeling was used to develop a model of the relationships of these factors and test hypotheses. The results showed that organizational commitment, top management support, the perceived value of systems engineering, and systems engineering support significantly influence systems engineering process performance in the launch vehicle industry. Implications of this study for improving the performance of systems engineering in launch vehicle organizations are discussed.
Read full abstract