It is known that if G is a group such that the centre factor group G/ζ(G)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$G/\\zeta (G)$$\\end{document} is polycyclic, then also the commutator subgroup G′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$G'$$\\end{document} is polycyclic. The aim of this paper is to describe this situation from a lattice point of view. It is proved that if G is a group admitting a permodularly embedded non-periodic subgroup P such that the interval [G/P] is a polycyclic lattice, then G contains a polycyclic normal subgroup N such that G/N is quasihamiltonian.