We give a combinatorial model for r-spin surfaces with parameterized boundary based on Novak (“Lattice topological field theories in two dimensions,” Ph.D. thesis, Universität Hamburg, 2015). The r-spin structure is encoded in terms of Zr-valued indices assigned to the edges of a polygonal decomposition. This combinatorial model is designed for our state-sum construction of two-dimensional topological field theories on r-spin surfaces. We show that an example of such a topological field theory computes the Arf-invariant of an r-spin surface as introduced by Randal-Williams [J. Topol. 7, 155 (2014)] and Geiges et al. [Osaka J. Math. 49, 449 (2012)]. This implies, in particular, that the r-spin Arf-invariant is constant on orbits of the mapping class group, providing an alternative proof of that fact.
Read full abstract