The coupling of lattice and heterostructure interfaces represents an effective strategy for disrupting the so-called scalar relationship and accelerating reactions involving multiple intermediates. In view of this, a lattice-heterostructure interfacial catalyst consisting of a crystalline Fe/Ni bimetallic MOF and amorphous Fe-MOF was designed in this paper for high-performance alkaline oxygen evolution reaction electrocatalysis. The strongly coupled lattice-heterostructure interface induces a unique synergistic effect that promotes electron transfer of the catalyst. The resulting catalyst exhibits exceptionally high catalytic activity for the oxygen evolution reaction in alkaline media, the Ni9Fe1-BDC-1@Fe-MOF coated on a glassy carbon electrode has an overpotential of 257 mV at a current density of 10 mA cm-2. Furthermore, this catalyst demonstrates a high electrochemical stability. These research results highlight the superiority of lattice-heterostructure interfaces in the development of advanced catalysts.
Read full abstract