This study is focused on analog modeling of the stick-slip process along an existing large fault in an elastic-viscoplastic model subjected to loading at a constant strain rate. Based on our model results and data from (Ma et al., 2012, 2014), we distinguish stable, meta-stable, and meta-instable stages of the stick-slip process (the latter includes the early and late sub-stages). Our experiments show that the fault is periodically reactivated by segmentation. We analysed this mechanism from one fault reactivation to another, and identified regressive and progressive trends of segmentation. The regressive segmentation takes place during the stable and meta-stable stages of the stick-slip process. Under regressive segmentation the number of active segments and their lengths are reduced. The progressive segmentation is initiated at the early meta-instable sub-stage of the stick-slip process. Its activity is desplayed by an increase in the number of active segments to a certain critical density, while their pattern becomes more chaotic. In the late sub-stage, number of segments decreases as they rapidly grow and join with each other to form larger active segments, up to full reactivation of the entire fault. For comparison with the model results, we interpret rock deformation monitoring records before the Bystroe earthquake. Our analysis confirms specific features of the anomalous rock deformation that are similar to the strain features observed along the model fault during the meta-instable stage. There are evidence to suggest that meta-instability of a fault is a potential candidate to short-term precursor of earthquakes.