AbstractPolarity reversals and excursions are the most significant geomagnetic field changes generated in the liquid outer core of the Earth, therefore studying them helps understand geodynamo processes. This study examines the Matuyama‐Brunhes (MB) reversal using a new reconstruction of the global geomagnetic field based on paleomagnetic data, termed Global Geomagnetic Field Model for the MB reversal (GGFMB). GGFMB covers 900–700 ka, including late Matuyama and early Brunhes. This allows us to also investigate the Kamikatsura excursion (ca. 888 ka). The model is based on 38 high‐quality paleomagnetic sediment records with age control mostly independent of the magnetic signal. GGFMB suggests that the MB reversal began about ∼799 ka, when non‐dipole field components increased and the axial dipole component decreased. The transitional fields first appeared on Earth's surface in the high‐latitude southern hemisphere and equatorial regions. The minimum dipole strength was reached around 780 ka and the axial dipole changed sign. After ∼10 Kyr, the field stabilized in the normal polarity of the early Brunhes. The MB reversal lasted ∼29 Kyr (from 799 to 770 ka) and had slower rate of dipole decay than recovery as well as lower dipole moment for several millennia before than after the reversal. According to GGFMB, the dipole moment during the Kamikatsura excursion was approximately half that of the current field and it was a regional excursion observed only over eastern Asia and North America. Our sediment data collection is heavily biased toward the northern hemisphere, thus more southern hemisphere records are needed to demonstrate GGFMB's robustness in this region.