Breakthroughs in shale gas exploration in the Upper Ordovician-Lower Silurian strata of the Upper Yangtze Platform have attracted interest in its sedimentary-tectonic evolution, but the tectonic background of the northern margin of the Upper Yangtze Platform remains unclear. In this paper, the Wufeng-Longmaxi formations on the northern margin of the Upper Yangtze Platform were investigated. Based on geochemical and mineralogical analyses of the tuffs/K-bentonites of the Wufeng Formation and the barite in the Longmaxi Formation, as well as previous research results, it was concluded that the northern margin of the Upper Yangtze Platform was in an extensional tectonic background during the Late Ordovician-Early Silurian. Detailed analysis revealed that, (1) the U–Pb zircon age of the tuff in the Bajiaokou section in South Qinling is 443.91 ± 0.92 Ma. The Zr/TiO2–Nb/Y diagram of the tuffs/K-bentonites indicates that their protoliths were alkaline-subalkaline basalt and andesite series rock. Based on the Th–Hf/3-Ta, Th–Tb*3-Ta*2, and TiO2–Nb/3-Th diagrams, there are undiscovered intraplate tension calc-alkaline basalts in the northern Yangtze Platform or the southern Qinling region, which provided volcanic clastic materials to the Ziyang, Lan'gao, Chengkou, Yichang and other regions. (2) Scanning electron microscopy revealed that the barite crystals in the Longmaxi Formation exhibit dissolution features and have a large particle size. Energy spectrum analysis of these barite crystals revealed that they have C, O, S, and Ba contents of 8.48 wt%, 22.98 wt%, 13.09 wt% and 55.44 wt%, so they are speculated to have been formed via cold methane seep genesis in a weak extensional tectonic setting. The 87Sr/86Sr ratios of the barite revealed that different types of barite were simultaneously formed in this area under the influences of hydrothermal and cold methane seeps. (3) The analysis of the heavy minerals in the Lower Silurian strata in the Bajiaokou section revealed that the provenance in the South Qinling area changed significantly during the late Early Silurian. Based on the above analyses, the northern margin of the Upper Yangtze Platform was in an extensional tectonic setting during the Late Ordovician-Early Silurian. The distribution of the total organic carbon content indicated that the extensional tectonic background provided good conditions for the enrichment and preservation of organic matter. The results of this study provide an understanding of the regional sedimentary-tectonic pattern and evolution of the Yangtze Platform during this period, as well as a reference for future shale gas exploration in this region.