Thin films of amorphous silicon (a-Si) coated on metals such as nickel (Ni) are one of the most promising anode architectures for high-energy-density lithium-ion (Li-ion) batteries. The performance and longevity of batteries with this type of electrode depend on the integrity of the Ni/a–Si interface. The integrity of the a-Si /Ni bonded interface during cycling is critical, but the experimental characterization of interfacial failure of this material system is highly challenging and there is a sparsity of interface strength data in the literature. Here, we describe a laser spallation (LS) technique to characterize the interfacial adhesion strength of Ni/a–Si multilayer films created by chemical vapor deposition (CVD). The LS technique enables the non-contact measurement of the tensile interfacial strength with high precision when compared to conventional methods for characterizing adhesion. Interferometric measurement combined with finite element analysis shows that the Ni/a–Si interface, created via the CVD of a-Si on Ni surfaces can withstand ≈46–72 MPa in tension before failure initiation. To ensure successful and precise characterization of interfacial adhesion strength using LS, we further develop a design criterion for multi-layer samples by analyzing the thin-film mechanics. Our study provides insights into the strength of the Ni/a–Si interface that governs the performance and durability of high-energy-density anodes and offers design guidelines for improving thin-film electrode integrity.
Read full abstract