Crack-free Stellite-6 alloy was fabricated using the laser powder bed fusion technique equipped with a heating module as the first attempt. Single tracks were printed with a build plate heated to 400 °C to identify the processing window. Based on the melt pool dimensions, two combinations (sample A: 300 W/750 mm/s and sample B: 275 W/1000 mm/s) were identified to print the cubes. The as-printed microstructure comprised FCC-Co dendrites with M7C3 in the interdendritic region. W-rich M6C particles were found in the overlapping regions between the melt pools, matching the Scheil simulations. However, gas pores were observed due to the higher nitrogen and oxygen content of the feedstock requiring hot isostatic pressing (HIP) at 1250 °C and 150 MPa for 2 h. Sample A was partially recrystallized with slightly coarsened M7C3, while sample B underwent complete recrystallization followed by grain growth along with higher coarsening of the M7C3 after HIP. The varying recrystallization behavior can be attributed to the difference in residual stresses and grain aspect ratio in the as-built condition dictated by laser power and scanning speed. The microhardness after HIP was slightly higher than its wrought counterpart, indicating no severe impact of post-processing on the properties of Stellite-6 alloy.
Read full abstract