Compared to duplex stainless steels (DSSs) prepared by traditional methods, specimens produced through laser powder bed fusion (LPBF) exhibit excellent yield strength but lower elongation. To improve elongation, understanding microstructure evolution during uniaxial tensile testing is crucial. This study investigates the slip behavior, grain boundary evolution, and phase transformation of LPBF 2205 duplex stainless steel during tensile deformation using in-situ electron backscatter diffraction (EBSD). Results show the formation of slip bands, which increase in number as loading stress rises. The primary slip systems activated are {110}<111> in ferrite and {111}<110> in austenite. In the ferrite phase, slip dislocations accumulate and generate low-angle grain boundaries (LAGBs), which evolve into high-angle grain boundaries (HAGBs), refining the grain structure. Numerous Σ3 annealing twins form in the austenite phase, but detwinning and twinning reduce Σ3 content as deformation processes. Ferrite and austenite exhibit good stability during the initial stages of tensile deformation. However, some austenite transforms into martensite through the transformation-induced plasticity (TRIP) effect at the final stages of deformation, which helps relieve stress concentration and delays material fracture. This study provides valuable insights for optimizing microstructure to improve the mechanical properties of LPBF materials.
Read full abstract