This research aims to evaluate and monitor the effectiveness of vegetation ecological restoration by integrating Multispectral Remote Sensing (MRS) and laser point cloud (LPC) monitoring technologies. Traditional vegetation restoration monitoring methods often face challenges of inaccurate data and insufficient coverage, and the use of MRS or LPC techniques alone has its limitations. Therefore, to more accurately monitor the vegetation restoration status, this study proposes a new monitoring method that combines the advantages of the large-scale coverage of MRS technology and the high-precision three-dimensional structural data analysis capability of LPC technology. This new method was applied in the Daqing oilfield area of China, aiming to provide effective ecological restoration assessment methods through the precise monitoring and analysis of regional vegetation growth and coverage. The results showed that there was a negative correlation between the vegetation humidity index and vegetation growth in the Daqing oilfield in 2023. The estimated monitoring effect of the research method could reach over 90%, and the coverage area of hydrangea restoration in the monitoring year increased by 7509 km2. The research technology was closer to the actual coverage situation. The simulation image showed that the vegetation coverage in the area has significantly improved after returning farmland to forests. Therefore, the technical methods used can effectively monitor the ecological restoration of vegetation, which has great research significance for both vegetation restoration and monitoring.
Read full abstract