A TEA CO 2 laser was used for the investigation of four-wave mixing (4WM) processes in sulfur hexafluoride (SF 6), an organic solvent (toluene), and III/V semiconductor wafers (InSb, InAs). The relevant involved grating mechanisms were probed by the 4WM technique. It was found that the decay times of the corresponding built-up transient gratings in the various nonlinear media differ by approximately six orders of magnitude. Furthermore, simulations of a phase conjugates mirror (PCM) were carried out by solving the Kirchhoff-Fresnel integral equations by complex conjugating the spatial field distribution at the PCM. Applying this technique an efficient production of low divergence high energy CO 2 laser pulses generated from a 4WM master oscillator/power amplifier (MOPA) scheme was predictable. For the modelling a large volume e-beam controlled CO 2 amplifier was placed along the signal beam. The optical homogeneity of the laser gas was disturbed by shock waves and by the laser-induced medium perturbation (LIMP) effect. The disturbing influence of both effects on the optical quality of the output radiation will be shown.
Read full abstract