Using mass spectrometric detection of positive and negative ions, we have investigated ionizing reactions of Ne(ns,nd) Rydberg atoms, efficiently excited by resonant two-photon excitation of metastable Ne(3s3P2) atoms, with electron attaching moleculesBC (BC=SF6, CCl4, CS2, O2) at thermal collision energies. Absolute rate constants have been determined in the range of low and intermediate principal quantum numbersn(5≦n≲30) by utilizing the photoionization signal caused by room temperature black-body radiation and the loss of Ne(3s3P2) atoms, associated with the laser excitation. Substantially differentn-dependences of the electron transfer cross section have been found for the larger molecules (BC = SF6, CCl4) and the smaller molecules (BC = CS2, O2). Simple model calculations have been performed to gain new insight into the dynamics of the electron transfer process; forBC = SF6, our results at lown(5 ≦n ≦ 10) suggest that internal energy conversion in the Coulombic complex Ne+ — SF 6 − is important for the formation of the detected ions.
Read full abstract