PurposeThe purpose of this paper is to find the influence of surface bump texture combination characteristics on friction-wear properties so as to provide a basis for the selection of the bump texture combination scheme on the surface of the roll.Design/methodology/approachIn this paper, six groups of different bump texture combination characteristics and their processing methods are introduced, of which three groups are regular distribution with different spacing and three groups are random distribution with different spacing. Then the effect of bump textures with different spacing, regular and random distribution on friction-wear properties was studied by ring block friction-wear experiments.FindingsThe results show that the friction coefficient of random distribution texture surface is lower than that of regular texture surface under the same spacing condition. In the regular distribution, the friction coefficient decreases with the increase of texture spacing. In the random distribution, the friction coefficient increases at first and then decreases with the increase of texture spacing. In addition, the wear resistance of textured surface is significantly higher than that of smooth surface because of the higher microhardness of the textured area. The attenuation ratio of textured surface roughness decreases with the increase of the distance between adjacent textures.Originality/valueAt present, the research on roller surface friction-wear is mainly based on the change of the overall surface roughness. However, there are few reports on the influence of the combination characteristics of laser bump texture on friction-wear from the microscopic scale.
Read full abstract