Titanium and titanium alloys with a medium thickness of 5 to 12 mm are widely used for ocean platforms, military equipment and in other fields because of their light weight, appropriate strength and corrosion resistance. In this study, autogenous laser welding and narrow-gap laser welding processes were researched and compared, and the welding characteristics, weld microstructure and joint strength were analyzed. The results showed that autogenous laser welding had higher efficiency, narrower weld width and higher microstructure uniformity. Autogenous laser welding can achieve the single pass weld penetration at laser keyhole mode. The weld width of narrow-gap laser welded joint was 12.5 mm, which was nearly three times than that of autogenous laser welding. The grain size of autogenous laser welding was obviously smaller and more uniform in depth than that of narrow-gap laser welding. In the weld zone, the coarse columnar α grains grew from the fusion line, while in the heat-affected zone, equiaxed α grains with needle and sawtooth α morphologies were presented. The microhardness of the heat-affected zone was higher than in the weld zone and the base metal due to the denser needle microstructure. The tensile samples all fractured at the base metal, indicating the welded joint strength efficiency was greater than 1.