To compare the differentially expressed proteins between cypermethrin-resistant and -sensitive Culex pipiens pallens, so as to unravel the mechanism underlying the resistance to cypermethrin in Cx. p. pallens. A quantitative proteomic analysis was performed among cypermethrin-sensitive and -resistant isolates of Cx. p. pallens using isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography with tandem mass spectrometry (LC-MS/MS). A total of 164 differentially expressed proteins were identified between cypermethrin-sensitive and -resistant isolates of Cx. p. pallens, including 54 up-regulated proteins and 110 down-regulated proteins. A large number of cuticular proteins, larval cuticular proteins, pupal cuticular proteins and cuticular structural constituent proteins, which are associated with cytoskeletal structure and components, were differentially expressed between cypermethrin-sensitive and -resistant isolates of Cx. p. pallens. Thirteen proteins, which were involved in energy production and conversion, translation, ribosomal structure and biogenesis, lipid transport and metabolism, post-translational modification, protein turnover, chaperones, cytoskeleton and intracellular transportation, were validated to be differentially expressed between cypermethrin-sensitive and -resistant isolates of Cx. p. pallens, which may serve as potential markers of cypermethrin resistance. Multiple insecticide resistance mechanisms contribute to the resistance to cypermethrin in Cx. p. pallens, including cuticular resistance and metabolic resistance, and the cuticular protein genes and cytochrome P450 enzymes may play an important role in the resistance of Cx. p. pallens to cypermethrin.
Read full abstract