Drought propagation is a complex process, and understanding the propagation mechanisms of meteorological drought to soil drought is crucial for early warning, disaster prevention, and mitigation. This study focuses on eight tributaries in the upper reaches of the Shiyang River. Based on the Standardized Precipitation Index (SPI) and the Standardized Soil Moisture Index (SSMI), the Drought Propagation Intensity Index (DIP) and Copula function were applied to quantify the intensity and time of drought propagation from meteorological to soil drought and explored the drought propagation patterns at different temporal and spatial scales in these tributaries. Results showed that, in the 0–10 cm soil layer, the propagation intensity of meteorological drought to soil drought was peer-to-peer, with a propagation time of one month. In the middle (10–40 cm) and deep (40–100 cm) soil layers, propagation characteristics differed between the eastern and western tributaries. The western tributaries experienced stronger drought propagation intensity and shorter propagation times (2–4 months), while the eastern tributaries exhibited peer-to-peer propagation intensity with longer times (4–10 months). The large areas of forests and grasslands in the upper reaches of the Shiyang River contributed to strong land–atmosphere interactions, leading to peer-to-peer drought propagation intensity in the 0–10 cm soil layer. The eastern tributaries had extensive cultivated land, where irrigation during meteorological drought enhanced soil moisture, resulting in peer-to-peer propagation intensity in the middle (10–40 cm) and deep (40–100 cm) soil layers. In contrast, the western tributaries, with larger forest areas and widespread permafrost, experienced high water consumption and limited recharge in the 10–40 cm and 40–100 cm soil layers, leading to strong drought propagation.
Read full abstract