Balancing electrochemical activity and structural reversibility of fibrous electrodes with accelerated Faradaic charge transfer kinetics and pseudocapacitive storage are highly crucial for fiber-shaped supercapacitors (FSCs). Herein, we report novel core-shell hierarchical fibers for high-performance FSCs, in which the ordered NiCoMoS nanosheets arrays are chemically anchored on Ti3C2Tx fibers. Beneficial from architecting stable polymetallic sulfide arrays and conductive networks, the NiCoMoS-Ti3C2Tx fiber maintains fast charge transfer, low diffusion and OH- adsorption barrier, and stabilized multi-electronic reaction kinetics of polymetallic sulfide. Consequently, the NiCoMoS-Ti3C2Tx fiber exhibits a large volumetric capacitance (2472.3 F cm-3) and reversible cycling performance (20,000 cycles). In addition, the solid-state symmetric FSCs deliver a high energy density of 50.6 mWh cm-3 and bending stability, which can significantly power electronic devices and offer sensitive detection for dopamine.