Optimization problems are prevalent in almost all areas and hence optimization algorithms are crucial for a myriad of real-world applications. Deterministic optimization algorithms tend to be computationally costly and time-consuming. Hence, heuristic and metaheuristic algorithms are more favoured as they provide near-optimal solutions in an acceptable amount of time. Swarm intelligence algorithms are being increasingly used for optimization problems owing to their simplicity and good performance. The Dragonfly Algorithm (DA) is one which is inspired by the swarming behaviours of dragonflies, and it has been proven to have a superior performance than other algorithms in multiple applications. Hence, it is worth considering its application to the traveling salesman problem which is a predominant discrete optimization problem. The original DA is only suitable for solving continuous optimization problems and, although there is a binary version of the algorithm, it is not easily adapted for solving discrete optimization problems like TSP. We have previously proposed a discrete adapted DA algorithm suitable for TSP. However, it has low effectiveness, and it has not been used for large TSP problems. In this paper, we propose an optimized discrete adapted DA by using the steepest ascent hill climbing algorithm as a local search. The algorithm is applied to a TSP problem modelling a package delivery system in the Kuala Lumpur area and to benchmark TSP problems, and it is found to have a higher effectiveness than the discrete adapted DA and some other swarm intelligence algorithms. It also has a higher efficiency than the discrete adapted DA.
Read full abstract