Pumped storage power plants, which is known as only large-scale energy management equipment, plays a vital important role in energy field. Hump characteristic and S characteristic are two classical unsteady hydraulic characteristics when pump-turbine operating at turbine mode and pump mode, respectively. It has been found that these two characteristics are both strongly related to the complex vortex evolution process in vaneless region while only few papers focus on the elimination mechanism of them. In present paper, a scaled runner with optimized high-pressure side (HPS) is designed and manufactured based on multi-objective optimization process arming at eliminating unsteady characteristic, i.e. hump characteristic and S characteristic, while maintaining efficiency characteristic unchanged. Thereafter, hydraulic experiments are conducted to investigate the impact of HPS geometry on hydraulic performance (efficiency, hump margin, S margin and pressure fluctuation) of object pump turbine. The experimental results show that compared with the original runner, the weighted average efficiency for pump mode increases by 0.1% while the weighted average efficiency for turbine mode decreases by 0.1%. Moreover, the S margin increases from 76.7 m to 87.2 m and the S2 unsteady region is largely increased. The hump margin decreases a little while it can recover to the original level through increasing 0.6% of the original ratio scale. Moreover, the runner with optimized HPS can effectively reduce the pressure fluctuation amplitude in vaneless region up to 33.3% and 21.4% for turbine mode and pump mode, respectively.
Read full abstract