Multiferroics are appealing because of application potentials in data storage devices, sensors, transducers, and energy harvesters. Molecular multiferroics emerge as a promising alternative to inorganic multiferroics due to flexibility, light weight, low toxicity, solution processing, structural diversity, and chemical tunability. While researches have predominantly focused on perovskite structures, studies on molecular ionic multiferroics remain relatively limited. It is urgent to creatively build a novel platform for studying and developing the coupling and interaction between the stress, electricity, and magnetism. Knowing this, the work focuses on a novel organic-inorganic hybrid multiferroic N-ethyl-N-(fluoromethyl)-N-methylethylammonium tetrabromoferrate (III) showing coexisting magnetic and electric orderings. It undergoes antiferromagnetic, ferroelectric, and ferroelastic transitions. Notably, under a strain of 2.0%, the piezoelectric response increases tenfold, and the coercive field of ferroelectric polarization is reduced by half. The strain-induced enhancement of piezoelectricity is rarely reported in molecular multiferroics. Density functional theory is employed to predict that the mechanism of the large piezoelectric response under strain engineering is related to the cation rotation and phase switching between the stable phase and an energetically competitive metastable phase. This study creates a new paradigm to develop molecular multiferroics and future microelectronic devices for energy conversion.
Read full abstract