Background Early warning score systems are widely used for identifying patients who are at the highest risk of deterioration to assist clinical decision-making. This could facilitate early intervention and consequently improve patient outcomes; for example, the National Early Warning Score (NEWS) system, which is recommended by the Royal College of Physicians in the United Kingdom, uses predefined alerting thresholds to assign scores to patients based on their vital signs. However, there is limited evidence of the reliability of such scores across patient cohorts in the United Arab Emirates. Objective Our aim in this study was to propose a data-driven model that accurately predicts in-hospital deterioration in an inpatient cohort in the United Arab Emirates. Methods We conducted a retrospective cohort study using a real-world data set that consisted of 16,901 unique patients associated with 26,073 inpatient emergency encounters and 951,591 observation sets collected between April 2015 and August 2021 at a large multispecialty hospital in Abu Dhabi, United Arab Emirates. The observation sets included routine measurements of heart rate, respiratory rate, systolic blood pressure, level of consciousness, temperature, and oxygen saturation, as well as whether the patient was receiving supplementary oxygen. We divided the data set of 16,901 unique patients into training, validation, and test sets consisting of 11,830 (70%; 18,319/26,073, 70.26% emergency encounters), 3397 (20.1%; 5206/26,073, 19.97% emergency encounters), and 1674 (9.9%; 2548/26,073, 9.77% emergency encounters) patients, respectively. We defined an adverse event as the occurrence of admission to the intensive care unit, mortality, or both if the patient was admitted to the intensive care unit first. On the basis of 7 routine vital signs measurements, we assessed the performance of the NEWS system in detecting deterioration within 24 hours using the area under the receiver operating characteristic curve (AUROC). We also developed and evaluated several machine learning models, including logistic regression, a gradient-boosting model, and a feed-forward neural network. Results In a holdout test set of 2548 encounters with 95,755 observation sets, the NEWS system achieved an overall AUROC value of 0.682 (95% CI 0.673-0.690). In comparison, the best-performing machine learning models, which were the gradient-boosting model and the neural network, achieved AUROC values of 0.778 (95% CI 0.770-0.785) and 0.756 (95% CI 0.749-0.764), respectively. Our interpretability results highlight the importance of temperature and respiratory rate in predicting patient deterioration. Conclusions Although traditional early warning score systems are the dominant form of deterioration prediction models in clinical practice today, we strongly recommend the development and use of cohort-specific machine learning models as an alternative. This is especially important in external patient cohorts that were unseen during model development.