Kinetic treatments of drift tearing modes that match an inner, resonant layer solution to an external magnetohydrodynamic (MHD) solution, characterised by $\unicode[STIX]{x1D6E5}^{\prime }$, can fail to match the ideal MHD boundary condition on the parallel electric field, $E_{\Vert }=0$. In this paper we demonstrate how consideration of ion sound and ion Landau damping effects achieves this, placing the theory on a firm footing. These effects are found to modify the effective critical $\unicode[STIX]{x1D6E5}^{\prime }$ for instability of drift tearing modes, in particular for weak electron temperature gradients. The implications for a realistic hot plasma resonant layer model – involving large ion Larmor radius and semi-collisional electron physics (Connor et al., Plasma Phys. Control. Fusion, vol. 54, 2012, 035003) – are determined.
Read full abstract