Doubts about whether high-density lipoprotein-cholesterol (HDL-C) levels are causally related to atherosclerotic cardiovascular disease (CVD) risk have stimulated research on identifying HDL-related metrics that might better reflect its cardioprotective functions. HDL is made up of different types of particles that vary in size, protein and lipid composition, and function. This review focuses on recent findings on the specific roles of HDL subpopulations defined by size in CVD. Small HDL particles are more effective than larger particles at promoting cellular cholesterol efflux because apolipoprotein A-I on their surface better engages ABCA1 (ATP binding cassette subfamily A member 1). In contrast, large HDL particles bind more effectively to scavenger receptor class B type 1 on endothelial cells, which helps prevent LDL from moving into the artery wall. The specific role of medium-sized HDL particles, the most abundant subpopulation, is still unclear. HDL is made up of subpopulations of different sizes of particles, with selective functional roles for small and large HDLs. The function of HDL may depend more on the size and composition of its subpopulations than on HDL-C levels. Further research is required to understand how these different HDL subpopulations influence the development of CVD.
Read full abstract