Electrochemical determination of dopamine (DA) in the presence of a large excess of ascorbic acid (AA) in their coexistence at a nickel oxide nanoparticle-modified preoxidized glassy carbon electrode (GCox/nano-NiOx) is achieved. The GCox/nano-NiOx electrode is prepared by electrodeposition of nickel nanoparticles (nano-Ni) onto an electrochemically activated glassy carbon (GC) electrode, and the thus prepared nano-Ni were subjected to electrochemical oxidation in alkaline medium for the formation of nickel oxide (NiOx). Modified electrodes were electrochemically and morphologically characterized. The effect of loading level of nickel was investigated by changing the number of potential cycles for the deposition of nano-Ni, i.e., 1, 2, 5, and 10 potential cycles, in the potential range from 0 to -1.0 V vs. SCE. Also, the experimental and instrumental parameters were optimized. Experimental results showed that the modified electrode differentiates well the oxidation peaks of DA and AA enabling the electrochemical determination of DA in the presence of a large excess of AA. Remarkably, it is found that the oxidation current of DA is 2 times larger than that of AA even the concentration of AA is about 5 times larger than that of DA. The LOD and LOQ of DA were calculated and were found to equal 0.69 and 2.3 mM, respectively. This offers the advantage of simple and selective detection of DA free of the interference of AA in real samples.
Read full abstract