AbstractThis paper introduces a novel topology for a non‐isolated bidirectional multiphase single inductor (BMPSIC) DC–DC converter. The proposed BMPSIC requires only a single inductor, irrespective of the number of arms, and features reduced volume and weight compared to the total magnetics needed for a conventional converter with similar ratings. The proposed BMPSIC advantages include a high DC voltage gain without operating on a large duty cycle, voltage stress on the power switches equal to that at the high‐voltage port, easy implementation, and a lower cost for application at high‐power densities. Furthermore, this topology requires only one current and voltage control loop. This paper thoroughly details the steady‐state operating principles of the inductor current continuous mode. It provides theoretical and mathematical analysis, including a comparative analysis of the proposed BMPSIC against earlier DC–DC converters, highlighting the superior performance and efficiency of the BMPSIC. An 8‐kW laboratory prototype, designed as a proof of concept, has been meticulously developed and tested, showcasing the performance of the converter across a broad range of load variations. The efficiency measured for the rated load exceeded 98.2% at the low‐voltage port of 250 V and the high‐voltage port of 400 V. Additionally, the article features Video S1, which illustrates the functioning of the converter.
Read full abstract