We report a large-angle rocking beam electron diffraction (LARBED) technique for electron diffraction analysis. Diffraction patterns are recorded in a scanning transmission electron microscope (STEM) using a direct electron detector with large dynamical range and fast readout. We use a nanobeam for diffraction and perform the beam double rocking by synchronizing the detector with the STEM scan coils for the recording. Using this approach, large-angle convergent beam electron diffraction (LACBED) patterns of different reflections are obtained simultaneously. By using a nanobeam, instead of a focused beam, the LARBED technique can be applied to beam-sensitive crystals as well as crystals with large unit cells. This paper describes the implementation of LARBED and evaluates the performance using silicon and gadolinium gallium garnet crystals as test samples. We demonstrate that our method provides an effective and robust way for recording LARBED patterns and paves the way for quantitative electron diffraction of large unit cell and beam-sensitive crystals.
Read full abstract