The research was aimed at studying the taxonomic diversity, habitat specialization, and trophic characteristics of mycobiota, including Basidiomycota, in the northern ecosystems of the Krasnoyarsk Krai (Central Siberia) near Norilsk. Larch forests and woodlands in the Siberian permafrost zone are distinctive and Basidiomycota, as a component of these ecosystems, plays an essential role in their functioning. Currently, there is a paucity of information about this group in Arctic ecosystems, both in terms of floristic and ecological aspects. Seventy species of macromycetes belonging to different trophic groups were discovered and identified. Only 15% of species occur regularly, while most species are found rarely or only once. The identified species belong to 44 genera, 25 families, and 8 orders, which are included in the class Agaricomycetes. The leading families in terms of the number of species are Russulaceae, Polyporaceae, Tricholomataceae, Suillaceae, Strophariaceae, and Cortinariaceae. Mycorrhizal fungi and wood decay fungi dominate the structure of mycobiota of the study area (the total share is 71%). The rest of the species (29%) are fungal decomposers inhabiting plant litter, the forest floor, and humus. The largest number of species occur in forest ecosystems, which are dominated by mycorrhizal and wood decay fungi (up to 70%), which are trophically associated with woody plants and debris. The fungal decomposers inhabiting plant litter, the forest floor, and humus dominate (about 80%) in the species composition of tundra, where, in the absence of woody substrate, wood decay fungi have not been found at all. The species richness of tree and shrub Arctic ecosystems is low, yet the taxonomical and ecological structure of Basidiomycota is similar to that observed in taiga and temperate forests. These data permit a more comprehensive description of the biodiversity of the Arctic and may prove useful in studying biological processes in these ecosystems.
Read full abstract