Rapid urbanization has affected ecosystem stability, and the construction of ecological security patterns (ESPs) can rationally allocate resources and achieve ecological protection. Priority evaluation of critical areas can maximize the benefits of ecological protection, which is crucial for sustainable urban development. However, most prior studies have focused on assessing individual elements of the ESP, rarely considering both the protection priority of ecological sources and corridors. We constructed ESPs for the Wuhan Metropolitan Area (WMA) from 2000 to 2020 and evaluated the priority of ecological sources and corridors for protection. The findings indicated that high-level ecological sources exhibited higher overall landscape connectivity and ecosystem service values with lower patch fragmentation. The average area proportions of primary, secondary, and tertiary ecological sources in 2000, 2010, and 2020 were 41.11%, 23.03%, and 29.86%, respectively. High-level ecological corridors had shorter lengths and offered higher comprehensive ecosystem service values. The total length of secondary corridors exceeded that of primary corridors by 1951.19 km, 650.39 km, and 2238.18 km in 2000, 2010, and 2020, respectively. Primary corridors, which connected fragmented and isolated sources, should have their ecological land percentage increased to enhance connectivity. Secondary corridors connected two independent and distant sources, providing the basis for ecological protection in the intervening area, whose surrounding habitats should be protected. This study identifies the ecological protection priority and offers a theoretical basis and practical reference for balancing urban development with ecological protection.